Antworten auf deine Fragen:
Neues Thema erstellen

Umwandlung eines Halbkreises in eine Gerade und dabei soll die Pfadlänge erhalten ble

S

schwizie

Guest

Hallo liebe Forumgemeinde,

wie kann ich aus einem Halbkreis oder einer beliebigen Kurve diese in eine Gerade wandeln, wobei die Kurvenlänge (Strichlänge) erhalten bleibt. - in AI CS2
MfG
schwizie
 

Vektorprogramme

berniecook

Photo-Fan

AW: Umwandlung eines Halbkreises in eine Gerade und dabei soll die Pfadlänge erhalten

Hallo,
ja wenn man der Mathe mächtig wäre, wäre diese Frage nicht gekommen ;-)

Nichts für ungut, spanner hat dazu ja alles gesagt!

Grüsse

Edit: Bei ner Kurve sieht das natürlich ganz anderst aus. Da musst Du eine mathematische Funktion auf den Kurvenverlauf legen um dann die Länge berechnen zu können!
 
Zuletzt bearbeitet:

scanner

...searching...

AW: Umwandlung eines Halbkreises in eine Gerade und dabei soll die Pfadlänge erhalten

Ja, Danke spapic!
Sowas aber auch....... Grmpff

;)
 

monika_g

Vektorgärtnerin

AW: Umwandlung eines Halbkreises in eine Gerade und dabei soll die Pfadlänge erhalten

Die Länge eines Pfads zigt Illu in den Dokumentinformationen an. Erklärung dazu ist sicher im Handbuch.
 
Bilder bitte hier hochladen und danach über das Bild-Icon (Direktlink vorher kopieren) platzieren.
Antworten auf deine Fragen:
Neues Thema erstellen

Willkommen auf PSD-Tutorials.de

In unseren Foren vernetzt du dich mit anderen Personen, um dich rund um die Themen Fotografie, Grafik, Gestaltung, Bildbearbeitung und 3D auszutauschen. Außerdem schalten wir für dich regelmäßig kostenlose Inhalte frei. Liebe Grüße senden dir die PSD-Gründer Stefan und Matthias Petri aus Waren an der Müritz. Hier erfährst du mehr über uns.

Stefan und Matthias Petri von PSD-Tutorials.de

Nächster neuer Gratisinhalt

03
Stunden
:
:
25
Minuten
:
:
19
Sekunden

Neueste Themen & Antworten

Flatrate für Tutorials, Assets, Vorlagen

Zurzeit aktive Besucher

Keine Mitglieder online.

Statistik des Forums

Themen
118.710
Beiträge
1.538.937
Mitglieder
67.646
Neuestes Mitglied
Josef B.
Oben